Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570506

RESUMO

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/genética , Mutação , Microambiente Tumoral/genética
2.
Nat Cell Biol ; 26(3): 478-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379051

RESUMO

The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.


Assuntos
Linfoma de Zona Marginal Tipo Células B , Linfócitos T , Humanos , Linfócitos T/patologia , Linfócitos B/patologia , Linfoma de Zona Marginal Tipo Células B/patologia , Fator de Crescimento Transformador beta , Microambiente Tumoral
3.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164819

RESUMO

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Assuntos
Neoplasias do Sistema Nervoso Central , Transplante de Células-Tronco Hematopoéticas , Linfoma , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Estudos Retrospectivos , Transplante Autólogo , Linfoma/terapia , Linfoma/tratamento farmacológico
4.
Blood Adv ; 7(18): 5258-5271, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37561599

RESUMO

Follicular lymphoma (FL) is a neoplasm derived from germinal center B cells, composed of centrocytes and centroblasts, with at least a focal follicular growth pattern. The t(14;18) translocation together with epigenetic deregulation through recurrent genetic alterations are now recognized as the hallmark of FL. Nevertheless, FL is a heterogeneous disease, clinically, morphologically, and biologically. The existence of FL lacking the t(14;18) chromosomal alteration highlights the complex pathogenesis of FL, and indicates that there are alternative pathogenetic mechanisms that can induce a neoplasm with follicular center B-cell phenotype. Based on their clinical presentation, t(14;18)-negative FLs can be divided into 3 broad groups: nodal presentation, extranodal presentation, and those affecting predominantly children and young adults. Recent studies have shed some light into the genetic alterations of t(14;18)-negative FL. Within the group of t(14;18)-negative FL with nodal presentation, cases with STAT6 mutations are increasingly recognized as a distinctive molecular subgroup, often cooccurring with CREBBP and/or TNFRSF14 mutations. FL with BCL6 rearrangement shows clinicopathological similarities to its t(14;18)-positive counterpart. In contrast, t(14;18)-negative FL in extranodal sites is characterized mainly by TNFRSF14 mutations in the absence of chromatin modifying gene mutations. FL in children have a unique molecular landscape when compared with those in adults. Pediatric-type FL (PTFL) is characterized by MAP2K1, TNFRSF14, and/or IRF8 mutations, whereas large B-cell lymphoma with IRF4 rearrangement is now recognized as a distinct entity, different from PTFL. Ultimately, a better understanding of FL biology and heterogeneity should help to understand the clinical differences and help guide patient management and treatment decisions.


Assuntos
Linfoma Folicular , Criança , Adulto Jovem , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Translocação Genética , Mutação , Linfócitos B/patologia , Centro Germinativo/patologia
5.
Leukemia ; 37(10): 2058-2065, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563306

RESUMO

Knowledge on the pathogenesis of FL is mainly based on data derived from advanced/systemic stages of FL (sFL) and only small cohorts of localized FL (lFL) have been characterized intensively so far. Comprehensive analysis with profiling of somatic copy number alterations (SCNA) and whole exome sequencing (WES) was performed in 147 lFL and 122 sFL. Putative targets were analyzed for gene and protein expression. Overall, lFL and sFL, as well as BCL2 translocation-positive (BCL2+) and -negative (BCL2-) FL showed overlapping features in SCNA and mutational profiles. Significant differences between lFL and sFL, however, were detected for SCNA frequencies, e.g., in 18q-gains (14% lFL vs. 36% sFL; p = 0.0003). Although rare in lFL, gains in 18q21 were associated with inferior progression-free survival (PFS). The mutational landscape of lFL and sFL included typical genetic lesions. However, ARID1A mutations were significantly more often detected in sFL (29%) compared to lFL (6%, p = 0.0001). In BCL2 + FL mutations in KMT2D, BCL2, ABL2, IGLL5 and ARID1A were enriched, while STAT6 mutations more frequently occurred in BCL2- FL. Although the landscape of lFL and sFL showed overlapping features, molecular profiling revealed novel insights and identified gains in 18q21 as prognostic marker in lFL.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Translocação Genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mutação , Hibridização in Situ Fluorescente
6.
Infection ; 51(1): 231-238, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195695

RESUMO

PURPOSE: Following the emergency use authorization of BNT162b2 by the Food and Drug administration (FDA) in early December 2020, mRNA- and vector-based vaccines became an important means of reducing the spread and mortality of the COVID-19 pandemic. The European Medicines Agency labelled immune thrombocytopenia (ITP) as a rare adverse reaction of unknown frequency after vector-, but not mRNA-vaccination. Here, we report on the long-term outcome of 6 patients who were diagnosed with de-novo, vaccine-associated ITP (VA-ITP), and on the outcome of subsequent SARS-CoV-2 re-vaccinations. METHODS: Patients were included after presenting to our emergency department. Therapy was applied according to ITP guidelines. Follow-up data were obtained from outpatient departments. Both mRNA- or vector-based vaccines were each used in 3 cases, respectively. RESULTS: In all patients, the onset of symptoms occurred after the 1st dose of vaccine was applied. 5 patients required treatment, 3 of them 2nd line therapy. All patients showed a complete response eventually. After up to 359 days of follow-up, 2 patients were still under 2nd line therapy with thrombopoietin receptor agonists. 5 patients have been re-vaccinated with up to 3 consecutive doses of SARS-CoV-2 vaccines, 4 of them showing stable platelet counts hereafter. CONCLUSION: Thrombocytopenia after COVID-19 vaccination should trigger a diagnostic workup to exclude vaccine-induced immune thrombotic thrombocytopenia (VITT) and, if confirmed, VA-ITP should be treated according to current ITP guidelines. Re-vaccination of patients seems feasible under close monitoring of blood counts and using a vaccine that differs from the one triggering the initial episode of VA-ITP.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/etiologia , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação/efeitos adversos , RNA Mensageiro
7.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
8.
Nat Commun ; 13(1): 5586, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151076

RESUMO

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Assuntos
COVID-19 , Linfoma , Vacinas , Linfócitos T CD8-Positivos , COVID-19/terapia , Epitopos de Linfócito T/genética , Humanos , Imunização Passiva , Mutação , Nucleoproteínas/genética , Peptídeos/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
9.
Blood ; 140(10): 1104-1118, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878001

RESUMO

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19 , Antineoplásicos/uso terapêutico , Humanos , Imunoterapia/métodos , Linfoma de Células B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfócitos T
10.
Leukemia ; 36(9): 2281-2292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851155

RESUMO

The variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of tumor cells and complex interactions within the tumor microenvironment (TME). IL-4 producing follicular helper T cells (TFH) are critical components of the FL TME. Binding of IL-4 to IL-4R on FL cells activates JAK/STAT signaling. We identified STAT6 mutations (STAT6MUT) in 13% of FL (N = 33/258), all clustered within the DNA binding domain. Gene expression data and immunohistochemistry showed upregulation of IL-4/STAT6 target genes in STAT6MUT FL, including CCL17, CCL22, and FCER2 (CD23). Functionally, STAT6MUT was gain-of-function by serial replating phenotype in pre-B CFU assays. Expression of STAT6MUT enhanced IL-4 induced FCER2/CD23, CCL17 and CCL22 expression and was associated with nuclear accumulation of pSTAT6. RNA sequencing identified PARP14 -a transcriptional switch and co-activator of STAT6- among the top differentially upregulated genes in IL-4 stimulated STAT6MUT lymphoma cells and in STAT6MUT primary FL cells. Quantitative chromatin immunoprecipitation (qChIP) demonstrated binding of STAT6MUT but not STAT6WT to the PARP14 promotor. Reporter assays showed increased IL-4 induced transactivation activity of STAT6MUT at the PARP14 promotor, suggesting a self-reinforcing regulatory circuit. Knock-down of PARP14 or PARP-inhibition abrogated the STAT6MUT gain-of-function phenotype. Thus, our results identify PARP14 as a novel therapeutic target in STAT6MUT FL.


Assuntos
Linfoma de Células B , Linfoma Folicular , Humanos , Imuno-Histoquímica , Interleucina-4 , Poli(ADP-Ribose) Polimerases , Fator de Transcrição STAT6 , Ativação Transcricional , Microambiente Tumoral
11.
Br J Haematol ; 196(6): 1381-1387, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967008

RESUMO

Relapsed follicular lymphoma (FL) can arise from common progenitor cells (CPCs). Conceptually, CPC-defining mutations are somatic alterations shared by the initial and relapsed tumours, mostly B-cell leukaemia/lymphoma 2 (BCL2)/immunoglobulin heavy locus (IGH) translocations and other recurrent gene mutations. Through complementary approaches for highly sensitive mutation detection, we do not find CPC-defining mutations in highly purified BCL2/IGH-negative haematopoietic progenitor cells in clinical remission samples from three patients with relapsed FL. Instead, we find cells harbouring the same BCL2/IGH translocation but lacking CREB binding protein (CREBBP), lysine methyltransferase 2D (KMT2D) and other recurrent gene mutations. Thus, (i) the BCL2/IGH translocation can precede CPC-defining mutations in human FL, and (ii) BCL2/IGH-translocated cells can persist in clinical remission.


Assuntos
Linfoma de Células B , Linfoma Folicular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma de Células B/genética , Linfoma Folicular/patologia , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação Genética
12.
Hemasphere ; 5(7): e603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235400

RESUMO

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

13.
Blood ; 138(24): 2499-2513, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34166502

RESUMO

Hematotoxicity represents a frequent chimeric antigen receptor (CAR) T-cell-related adverse event and remains poorly understood. In this multicenter analysis, we studied patterns of hematopoietic reconstitution and evaluated potential predictive markers in 258 patients receiving axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) for relapsed/refractory large B-cell lymphoma. We observed profound (absolute neutrophil count [ANC] <100 cells per µL) neutropenia in 72% of patients and prolonged (21 days or longer) neutropenia in 64% of patients. The median duration of severe neutropenia (ANC < 500 cells per µL) was 9 days. We aimed to identify predictive biomarkers of hematotoxicity using the duration of severe neutropenia until day +60 as the primary end point. In the training cohort (n = 58), we observed a significant correlation with baseline thrombocytopenia (r = -0.43; P = .001) and hyperferritinemia (r = 0.54; P < .0001) on univariate and multivariate analysis. Incidence and severity of cytokine-release syndrome, immune effector cell-associated neurotoxicity syndrome, and peak cytokine levels were not associated with the primary end point. We created the CAR-HEMATOTOX model, which included markers associated with hematopoietic reserve (eg, platelet count, hemoglobin, and ANC) and baseline inflammation (eg, C-reactive protein and ferritin). This model was validated in independent cohorts, one from Europe (n = 91) and one from the United States (n = 109) and discriminated patients with severe neutropenia ≥14 days to <14 days (pooled validation: area under the curve, 0.89; sensitivity, 89%; specificity, 68%). A high CAR-HEMATOTOX score resulted in a longer duration of neutropenia (12 vs 5.5 days; P < .001) and a higher incidence of severe thrombocytopenia (87% vs 34%; P < .001) and anemia (96% vs 40%; P < .001). The score implicates bone marrow reserve and inflammation prior to CAR T-cell therapy as key features associated with delayed cytopenia and will be useful for risk-adapted management of hematotoxicity.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Produtos Biológicos/efeitos adversos , Doenças Hematológicas/etiologia , Imunoterapia Adotiva/efeitos adversos , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos de Linfócitos T , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia/etiologia , Antineoplásicos Imunológicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Síndrome da Liberação de Citocina/etiologia , Humanos , Incidência , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/terapia , Síndromes Neurotóxicas/etiologia , Neutropenia/etiologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Estudos Retrospectivos , Trombocitopenia/etiologia , Adulto Jovem
14.
Sci Rep ; 11(1): 5838, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712646

RESUMO

Chemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação com Perda de Função/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Recidiva Local de Neoplasia/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
BMC Infect Dis ; 21(1): 121, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509115

RESUMO

BACKGROUND: Prolonged myelosuppression following CD19-directed CAR T-cell transfusion represents an important, yet underreported, adverse event. The resulting neutropenia and multifactorial immunosuppression can facilitate severe infectious complications. CASE PRESENTATION: We describe the clinical course of a 59-year-old patient with relapsed/refractory DLBCL who received Axicabtagene-Ciloleucel (Axi-cel). The patient developed ASTCT grade I CRS and grade IV ICANS, necessitating admission to the neurological ICU and prolonged application of high-dose corticosteroids and other immunosuppressive agents. Importantly, neutropenia was profound (ANC < 100/µl), G-CSF-refractory, and prolonged, lasting more than 50 days. The patient developed severe septic shock 3 weeks after CAR transfusion while receiving anti-fungal prophylaxis with micafungin. His clinical status stabilized with broad anti-infective treatment and intensive supportive measures. An autologous stem cell backup was employed on day 46 to support hematopoietic recovery. Although the counts of the patient eventually started to recover, he developed an invasive pulmonary aspergillosis, which ultimately lead to respiratory failure and death. Postmortem examination revealed signs of Candida glabrata pancolitis. CONCLUSIONS: This case highlights the increased risk for fatal infectious complications in patients who present with profound and prolonged cytopenia after CAR T-cell therapy. We describe a rare case of C. glabrata pancolitis associated with multifactorial immunosuppression. Although our patient succumbed to a fatal fungal infection, autologous stem cell boost was able to spur hematopoiesis and may represent an important therapeutic strategy for DLBCL patients with CAR T-cell associated bone marrow aplasia who have underwent prior stem cell harvest.


Assuntos
Anemia Aplástica/etiologia , Antígenos CD19/uso terapêutico , Aspergillus fumigatus/isolamento & purificação , Candida glabrata/isolamento & purificação , Imunoterapia Adotiva/efeitos adversos , Infecções Fúngicas Invasivas/etiologia , Anemia Aplástica/terapia , Antígenos CD19/efeitos adversos , Produtos Biológicos , Evolução Fatal , Humanos , Infecções Fúngicas Invasivas/microbiologia , Infecções Fúngicas Invasivas/terapia , Linfoma Difuso de Grandes Células B/terapia , Masculino , Pessoa de Meia-Idade
17.
Blood Adv ; 4(18): 4451-4462, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32941649

RESUMO

High-dose therapy and autologous stem cell transplantation (HDT/ASCT) is an effective salvage treatment for eligible patients with follicular lymphoma (FL) and early progression of disease (POD). Since the introduction of rituximab, HDT/ASCT is no longer recommended in first remission. We here explored whether consolidative HDT/ASCT improved survival in defined subgroups of previously untreated patients. We report survival analyses of 431 patients who received frontline rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for advanced FL, and were randomized to receive consolidative HDT/ASCT. We performed targeted genotyping of 157 diagnostic biopsies, and calculated genotype-based risk scores. HDT/ASCT improved failure-free survival (FFS; hazard ratio [HR], 0.8, P = .07; as-treated: HR, 0.7, P = .04), but not overall survival (OS; HR, 1.3, P = .27; as-treated: HR, 1.4, P = .13). High-risk cohorts identified by FL International Prognostic Index (FLIPI), and the clinicogenetic risk models m7-FLIPI and POD within 24 months-prognostic index (POD24-PI) comprised 27%, 18%, and 22% of patients. HDT/ASCT did not significantly prolong FFS in high-risk patients as defined by FLIPI (HR, 0.9; P = .56), m7-FLIPI (HR, 0.9; P = .91), and POD24-PI (HR, 0.8; P = .60). Similarly, OS was not significantly improved. Finally, we used a machine-learning approach to predict benefit from HDT/ASCT by genotypes. Patients predicted to benefit from HDT/ASCT had longer FFS with HDT/ASCT (HR, 0.4; P = .03), but OS did not reach statistical significance. Thus, consolidative HDT/ASCT after frontline R-CHOP did not improve OS in unselected FL patients and subgroups selected by genotype-based risk models.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Folicular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Humanos , Linfoma Folicular/tratamento farmacológico , Prednisona/uso terapêutico , Fatores de Risco , Rituximab/uso terapêutico , Transplante Autólogo , Vincristina/uso terapêutico
18.
Blood ; 136(5): 526-527, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32730577
19.
Cell Rep ; 31(5): 107522, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330423

RESUMO

Tumor cells orchestrate their microenvironment. Here, we provide biochemical, structural, functional, and clinical evidence that Cathepsin S (CTSS) alterations induce a tumor-promoting immune microenvironment in follicular lymphoma (FL). We found CTSS mutations at Y132 in 6% of FL (19/305). Another 13% (37/286) had CTSS amplification, which was associated with higher CTSS expression. CTSS Y132 mutations lead to accelerated autocatalytic conversion from an enzymatically inactive profrom to active CTSS and increased substrate cleavage, including CD74, which regulates major histocompatibility complex class II (MHC class II)-restricted antigen presentation. Lymphoma cells with hyperactive CTSS more efficiently activated antigen-specific CD4+ T cells in vitro. Tumors with hyperactive CTSS showed increased CD4+ T cell infiltration and proinflammatory cytokine perturbation in a mouse model and in human FLs. In mice, this CTSS-induced immune microenvironment promoted tumor growth. Clinically, patients with CTSS-hyperactive FL had better treatment outcomes with standard immunochemotherapies, indicating that these immunosuppressive regimens target both the lymphoma cells and the tumor-promoting immune microenvironment.


Assuntos
Apresentação de Antígeno/imunologia , Catepsinas/metabolismo , Linfoma Folicular/metabolismo , Microambiente Tumoral/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Terapia de Imunossupressão , Linfoma Folicular/patologia , Camundongos
20.
Cancer Discov ; 10(3): 440-459, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915197

RESUMO

CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to define a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBP-mutant cells in tandem with promoting antitumor immunity.This article is highlighted in the In This Issue feature, p. 327.


Assuntos
Proteína de Ligação a CREB/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Histona Desacetilases/genética , Linfoma/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigenoma/genética , Epigenoma/imunologia , Genes MHC Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Interferons/genética , Interferons/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfoma/tratamento farmacológico , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...